FORMAL REASONING

USING
 DISTRIBUTED ASSERTIONS

Workshop on Libraries of Formal Proofs and Natural Mathematical Language

EuroProofNet Joint WG4-WG5 meeting, Cambridge, England

September 8, 2023

FARAH AL WARDANI KAUSTUV CHAUDHURI DALE MILLER

LIX, INRIA SACLAY

Many different systems
Common (general) goal
Separately growing environments

THE PREVALENT VIEW

SYSTEMS AS SEPARATE ENVIRONMENTS

Many different systems
Common (general) goal
Separately growing environments

THE PREVALENT VIEW

SYSTEMS AS SEPARATE ENVIRONMENTS

Side (major) effects?
Redundant information and effort
Disconnected information and processes
Inefficiency
Lost benefits of connection (modularity..)

THE QUEST FOR INTEROPERABILITY

Re-checkable proof certificates
Or
External system as trusted procedure

THE QUEST FOR INTEROPERABILITY
one-to-one integration

Examples:
Flyspeck project, SAT and SMT in Coq, etc

Re-checkable proof certificates
Or
External system as trusted procedure

THE QUEST FOR INTEROPERABILITY

one-to-one integration

Examples:
Flyspeck project, SAT and SMT in Coq, etc Observations

Limited to specific systems
Not always feasible

Evidential tool bus

Dedukti, MMT

Logics and systems as theories in one trusted system

THE QUEST FOR INTEROPERABILITY

> many-to-one integration
(aim: universal interoperability)

Translating and combining libraries (theorems and proofs) into one trusted system

TLAPS

several systems trusted by main system
Evidential tool bus
Dedukti, MMT
Logics and systems as theories in one trusted system

THE QUEST FOR INTEROPERABILITY

many-to-one integration

(aim: universal interoperability)
Translating and combining libraries (theorems and proofs) into one trusted system

TLAPS

several systems trusted by main system
Observations
Assume a central framework/language/system

Bridges between systems
OMDoc/MMT, TPTP
THE QUEST FOR INTEROPERABILITY
standard formats and languages

Bridges between systems
OMDoc/MMT, TPTP
THE QUEST FOR INTEROPERABILITY
standard formats and languages

Observations
useful and needed BUT not enough
no easy consensus

QED Manifesto, Formal Abstracts,
Logosphere, Logipedia ...

THE QUEST FOR INTEROPERABILITY
universal
libraries
(incorporating different
systems)

Observations
Many proposed libraries (natural)
But disconnected

Additional layer of disconnected environments

Existing systems and libraries integration

Transporting and rechecking proofs problematic

THE QUEST FOR INTEROPERABILITY
many approaches, many dimensions

Additional layer of disconnected environments Existing systems and libraries integration

Transporting and rechecking proofs problematic

THE QUEST FOR INTEROPERABILITY

many approaches, many dimensions

New system:
Where to go?
Efforts? dependent on other system and community?
Can and will (or even want to) be expressible in a pre-defined central logical framework/metalanguage?

EXPLORING A DIFFERENT DIMENSION

EXPLORING

 A DIFFERENT DIMENSION
Why not start from simple needs?

Integrate systems, libraries

EXPLORING

 A DIFFERENT DIMENSIONstarting goal

Integrate systems, libraries

EXPLORING

 A DIFFERENT DIMENSIONstarting goal

Use a theorem proved in one development
as a lemma
in another development

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

EXPLORING A DIFFERENT DIMENSION

EXAMPLE

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

In Abella?

EXPLORING A DIFFERENT DIMENSION

EXAMPLE

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

In Abella?

EXPLORING A DIFFERENT DIMENSION

$$
n \text { in }\{0,1,12\}-->\text { fib }(n)=n^{\wedge} 2-- \text { easy in Abella }
$$

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

In Abella?

EXPLORING

 A DIFFERENT DIMENSIONEXAMPLE
n in $\{0,1,12\}-->f i b(n)=n^{\wedge} 2--$ easy in Abella

$$
\operatorname{fib}(n)=n^{\wedge} 2-->n \text { in }\{0,1,12\} \text { ???? }
$$

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

In Abella?

EXPLORING

 A DIFFERENT DIMENSIONEXAMPLE
n in $\{0,1,12\} \rightarrow->\operatorname{fib}(n)=n^{\wedge} 2--$ easy in Abella
$\operatorname{fib}(n)=n^{\wedge} 2 \rightarrow n$ in $\{0,1,12\}$????

need this LEMMA

Lemma. For $n \in \mathbb{N}$, if $n \geq 13$, then $\operatorname{fib}(n)>n^{2}$.
Not easily proved in Abella 2.0

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where $\operatorname{fib}(n)$ stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

In Abella?

n in $\{0,1,12\} \rightarrow$ fib(n) $=n^{\wedge} 2$-- easy in Abella
$\operatorname{fib}(n)=n^{\wedge} 2-->n$ in $\{0,1,12\}$????

need this LEMMA

Lemma. For $n \in \mathbb{N}$, if $n \geq 13$, then $\operatorname{fib}(n)>n^{2}$.
Not easily proved in Abella 2.0

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

EXPLORING A DIFFERENT DIMENSION

EXAMPLE

\square
THEOREM, in Abella

Theorem. For $n \in \mathbb{N}$, $\operatorname{fib}(n)=n^{2}$ if and only if $n \in\{0,1,12\}$, where fib (n) stands for the nth Fibonacci number defined as: $\operatorname{fib}(0) \triangleq 0$, $\operatorname{fib}(1) \triangleq 1$, and $\operatorname{fib}(n+2) \triangleq \operatorname{fib}(n+1)+\operatorname{fib}(n)$.

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
... proof script here ...
... apply fib_square_above...
... proof script continued ...
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

HOW?

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2--> x = z \/ x = s z \/ x = s^12 z) 八
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
.. proof script here
... apply fib_square_above...
... proof script continued
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

HOW?

Get the theorem from Coq

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
.. proof script here
... apply fib_square_above...
... proof script continued
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

HOW?

Get the theorem from Coq
Translate it into Abella language
THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 - > x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
.. proof script here
... apply fib_square_above...
... proof script continued
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
... proof script here
... apply fib_square_above...
... proof script continued
```


HOW?

Get the theorem from Coq
Translate it into Abella language
Trust the (whole) development

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

\square
THEOREM, in Abella
Get the theorem from Coq?
Some form of information representation, storage, and retrieval

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella
Translate it into Abella language?
Incorporating translation aspects into information representation solution

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
... proof script here
... apply fib_square_above...
... proof script continued
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
... proof script here
... apply fib_square_above...
... proof script continued
```

Trust the (whole) development?

1. Trusting the Coq development
2. Trusting the Abella development

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella
Theorem fib_squares: forall x x2, nat x-> times x x x2 ->
 ($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z} \rightarrow \mathrm{fib} \mathrm{x}$ x2).
... proof script here
... apply fib_square_above...
... proof script continued

1. Trusting the Coq development

Transport Coq proof into Abella?
Maybe not feasible, so don't assume it

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella
Theorem fib_squares: forall x x2, nat x-> times x x $x 2$->
 ($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z} \rightarrow$ fib x x 2).
... proof script here
... apply fib_square_above...
... proof script continued
\square

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella

\square

Theorem fib_squares: forall x x2, nat x-> times x x $x 2$->
 ($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z} \rightarrow$ fib x x 2).
... proof script here
... apply fib_square_above...
... proof script continued

1. Trusting the Coq development Trust the proof as checked in Coq? need some form of stamp:

ASSERTION

"I, some user, have indeed proved this theorem (fib_square_above), in Coq"

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella
Theorem fib_squares: forall x x2, nat x-> times x x $x 2$->
 ($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z} \rightarrow \mathrm{fib} \mathrm{x}$ x2).
... proof script here
... apply fib_square_above...
... proof script continued

2. Trusting the Abella development

 Trust the proof as checked in Abella?(if abella user, normal trusting of abella kernel)

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
... proof script here
... apply fib_square_above...
... proof script continued
```

End goal of example: reuse whole development Trust the (whole) development?
"I, some user, have
indeed proved this
theorem (fib_squares), in
Abella, depending on
(fib_square_above)"
?) ASSERTION-1
"I, some user, have indeed proved this theorem (fib_square_above), in Coq" ASSERTION-0

Ivan Ayvazovsky, Public domain, via Wikimedia Commons

INTRODUCING DAMF

The Distributed Assertion
Management Framework

Establish distributed ground for exchange before combining pre-existing libraries and systems

New system: small effort to connect at least regarding ability to make its assertions available for others
before combining pre-existing libraries and systems

New system: small effort to connect at least regarding ability to make its assertions available for others

DESIGN \& IMPLEMENTATION

The poor poet, Carl Spitzweg. Public domain, via Wikimedia Commons

DESIGN \& IMPLEMENTATION

outset
concerns

Consider diverse tools, users
Each user could use mode/tool differently
Agents, in a distributed environment

OUTSET CONCERNS

assertion

presentation

Consider diverse tools, users
Each user could use mode/tool differently
Agents, in a distributed environment

OUTSET CONCERNS

assertion presentation

ASSERTION
K (agent) says C (claim)

Consider diverse tools, users
Each user could use mode/tool differently
Agents, in a distributed environment

OUTSET CONCERNS

assertion
presentation

ASSERTION

K (agent) says C (claim)

Consider diverse tools, users
Each user could use mode/tool differently
Agents, in a distributed environment

OUTSET CONCERNS

assertion presentation

ASSERTION

K (agent) says C (claim)

"proved theorem in mode" "proved theorem in mode, depending on another theorem"

A robust way of verification

Information need to be:
clearly specified, globally accessible

OUTSET CONCERNS

information

presentation, storage, retrieval

Information need to be:
clearly specified, globally accessible

OUTSET CONCERNS

information

 presentation, storage, retrieval
Global repository of objects

How to represent such a global repository?

distributed

OUTSET CONCERNS

information

presentation, storage, retrieval
devoid of naming conflicts

Usual web-addressing scheme (URLs)? distributed - YES

BUT, consider:
data inaccessibility or modification distributed, adversarial setting devoid of naming conflicts - NO

Content-addressing scheme

OUTSET CONCERNS

information

presentation, storage, retrieval

Content-addressing scheme

InterPlanetary File System (IPFS):
"a modular suite of protocols for organizing and transferring data, designed from the ground up with the principles of content addressing and peer-to-peer networking"

IPLD (InterPlanetary Linked Data)
to present linked data in IPFS
Data persistence, integrity, deduplication, etc

Example Assertion Object

Name: IPFS Content Identifier (cid) - hash
bafyreiek2t75whn7gi6ygrymegguescqi4iudjj56uitnij775u2e2j3nu

Example Assertion Object

Name: IPFS Content Identifier (cid) - hash
bafyreiek2t75whn7gi6ygrymegguescqi4iudjj56uitnij775u2e2j3nu

```
{ "format":"assertion",
"agent":"-----BEGIN PUBLIC KEY-----\nMFIwEAYHKoZ... \n-----END PUBLIC KEY-----\n",
"claim": {"/":"bafyreibvtxzqhvht5rfxpw3rkgx3xliotvjsgqps2y..."},
"signature":"3040021e10db76a6606d7a813747849028c79e52eea3976fe..." }
```


The poor poet, Carl Spitzweg. Public domain, via Wikimedia Commons

DESIGN \& IMPLEMENTATION

Information: a global, resilient, connected view

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n->n{ }^{n} 2<f i b n$. Proof.

Qed.

Presenting Assertions:

Assertion:

claim

THEOREM, in Abella

```
Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
    (fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /
    (x = z \/ x = s z \/ x = s^12 z -> fib x x2).
.. proof script here
.. apply fib_square_above...
... proof script continued
x x2 ->
\(\square\)
\(\square\)
\(\square\) (fib x x2 \(\rightarrow \mathrm{x}=\mathrm{z}\) \/ \(\mathrm{x}=\mathrm{s} \mathrm{z}\) \/ \(\left.\mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}\right) /\)
\((x=z \backslash / x=s\)
. \(=\) proof script here
.. apply fib_square_above...
.. proof script continued
```


-

agent
signature

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n->n{ }^{n} 2<f i b n$. Proof.

Qed.

Presenting Assertions:

Assertion:
clairm?

THEOREM, in Abella

```
```

Theorem fib_squares: forall x x2, nat x -> times x x x2 ->

```
```

Theorem fib_squares: forall x x2, nat x -> times x x x2 ->
(fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
(fib x x2 -> x = z \/ x = s z \/ x = s^12 z) /\
(x = z \/ x = s z \/ x = s^12 z -> fib x x2).
(x = z \/ x = s z \/ x = s^12 z -> fib x x2).
.. proof script here

```
.. proof script here
```

.. apply fib_square_above...
.. proof script continued

```
    proof script continued ...
```

```
    proof script continued ...
```


agent
signature

Presenting Assertions:

Claim:
"Produced this theorem in Coq"

Presenting Assertions:

LEMMA, in Coq
Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

Claim:
"Produced this theorem in Coq"
Production object

Presenting Assertions:

LEMMA, in Coq
Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed. \square
"Produced this theorem in Coq"
Production object
Formula, mode?

Presenting Assertions:
Claim:
"Produced this theorem in Coq"
Production object
Formula, mode?
enough?

Presenting Assertions:

Claim:

need to track dependency on a locally Unproved Iemma
"Produced this theorem in Abella depending on ...

Presenting Assertions:

Claim:

need to track dependency on a locally Unproved Iemma
"Produced this theorem in Abella depending on ...'

Production object
Formula, mode?
Sequent, mode

Available in global repository
Known and fixed meanings
Produced by agents
Independent of consumers criteria of what and how

INFORMATION

STARTING CORE
TYPES

```
{ "format":"assertion",
"agent":"-----BEGIN PUBLIC KEY-----\\MMFIwEAYHKoZ... \n-----END PUBLIC KEY-----\n",
"claim": {"/":"bafyreibvtxzqhvht5rfxpw3rkgx3xliotvjsgqps2y..."},
"signature":"3040021e10db76a6606d7a813747849028c79e52eea3976fe..." }
```


INFORMATION

STARTING CORE
TYPES

INFORMATION

STARTING CORE
TYPES

And so on ...

INFORMATION
STARTING CORE
TYPES

The poor poet, Carl Spitzweg. Public domain, via Wikimedia Commons

DESIGN \& IMPLEMENTATION

Dispatch: an intermediary tool

Package up common procedures between agents
interaction with IPFS
type validation of objects
Facilitating participation of systems in DAMF

DISPATCH

an intermediary tool

Package up common procedures between agents
interaction with IPFS
type validation of objects
Facilitating participation of systems in DAMF

DISPATCH

an intermediary tool

Dispatch: "an" intermediary tool between agents and the global repository

Package up common procedures between agents
interaction with IPFS
type validation of objects
Facilitating participation of systems in DAMF

DISPATCH

an intermediary tool

Dispatch: "an" intermediary tool between agents and the global repository

First two functionalities
publish
get

```
{"format": "assertion",
    "agent": "localAgent",
    "claim": {
        "format": "annotated-production",
        "annotation":
        "production": {
            "mode": "damf:bafyreihnx2. . .",
            "sequent": {
                "conclusion": "plus_comm",
                "dependencies": [ "damf:bafyreihw6g. . .", "plus_succ" ] } } },
    "formulas": {
        "plus_comm": {
            "language": "damf:bafyreidyts. . .",
            "content": ": forall M N K, nat K -> . . .",
            "context": ["plus"] },
        "plus_succ": {
            "language": "damf:bafyreidyts. . ...",
            "content": ": forall M N K, . . .",
            "context": ["plus"] } },
    "contexts": {
        "plus": {
            "language": "damf:bafyreidyts. . ...",
            "content": [
                "Kind nat type.", "Type z nat.", "Type s nat -> nat.",
                "Define plus : nat }->\mathrm{ nat }->\mathrm{ prop by . . .." ] } } }
```

```
{"format": "assertion",
    "agent": "localAgent",
    "claim": {
        "format": "annotated-production",
        "annotation"
        "production": {
            "mode": "damf:bafyreihnx2. . .",
            "sequent": {
            "conclusion": "plus_comm",
                "dependencies": [ "damf:bafyreinw6g. . .", "plus_succ" ] } } },
    "formulas": {
        "plus_comm": {
            "language": "damf:bafyreidyts. . .",
            "content": ": forall M N K, nat K -> . . .",
            "context": ["plus"] },
        "plus_succ": {
            "\anguage": "damf:bafyreidyts. . ...",
            "content": ": forall M N K, . . .",
            "context": ["plus"] } },
    "contexts": {
        "plus": {
            "language": "damf:bafyreidyts. . ...",
            "content": [
                "Kind nat type.", "Type z nat.", "Type s nat -> nat.",
                    "Define plus : nat }->\mathrm{ nat }->\mathrm{ prop by . . .." ] } } }
```


LEMMA, in Coq

Theorem fib_square_above: forall n, $13<=n \rightarrow n \wedge 2<f i b n . b a f y r e i f s w w i l v z n j y 76 k f s 3 f 2 w o t n j p l l o k 64 n . .$. Proof.

Qed.

LEMMA, in Coq

Theorem fib_square_above: forall n, $13<=n->n \wedge 2<f i b n$. Proof.

Qed.
> ipfs dag get
bafyreifswwilvznjy76kfs3f2wot.../claim/ production/sequent/conclusion/content
"forall $n, 13<=n \rightarrow n$ n $2<$ fib n

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. Proof.

Qed.

THEOREM, in Abella
Theorem fib_squares: forall x x2, nat x-> times $x \times x 2$-> (fib x x2 $\left.->x=z 1 / x=s z / / x=s^{\wedge} 12 \mathrm{z}\right) / 八$ ($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z} \rightarrow \mathrm{fib} \mathrm{x} \mathrm{x} 2$).
.. proof script here
... apply fib_square_above...
.. proof script continued

> > ipfs dag get bafyreifswwilvznjy76kfs3f2wot.../claim/ production/sequent/conclusion/content
"forall $n, 13<=n \rightarrow n$ n $2<$ fib n
NOW, after we got the Coq Assertion ready, how to use it in the Abella development?

The poor poet, Carl Spitzweg. Public domain, via Wikimedia Commons

DESIGN \& IMPLEMENTATION

DAMF-aware system: Abella-DAMF

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n->n \wedge 2<f i b n$. bafyreifswwilvznjy76kfs3f2wotnjpllok64n... Proof.

Qed.

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n \cdot b a f y r e i f s w w i l v z n j v 76 k f s 3 f 2 w o t n j p l l o k 64 n .$. Proof.

Qed.
Importing LEMMA into Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall y, times x x y ->
    forall u, fib x u -> lt y u.
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n . b a f y r e i f s w w i l v z n j v 76 k f s 3 f 2 w o t n j p l l o k 64 n .$. Proof.

Qed.
Importing LEMMA into Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall Y, times x x y 
    forall u, fib x u -> lt y u.
```


LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n$. bafyreifswwilvznjy76kfs3f2wotnjpllok64n...
Proof.
Qed.
Importing LEMMA into Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall Y, times x x y 
    forall u, fib x u -> lt y u.
```

>> dispatch publish (adapter assertion)
dependencies: cid of fib_square_above(Coq)
conclusion: cid of fib_square_above(Abella)

LEMMA, in Coq

Theorem fib_square_above: forall $n, 13<=n \rightarrow n \wedge 2<f i b n \cdot b a f y r e i f s w w i l v z n j v 76 k f s 3 f 2 w o t n j p l l o k 64 n . .$. Proof.

Qed.

Importing LEMMA into Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall y, times x x y ->
    forall u, fib x u -> lt y u.
```

THEOREM, in Abella
Theorem fib_squares: forall x x2, nat x-> times x x x2 ->
(fib x x2 $\rightarrow \mathrm{x}=\mathrm{z}$ \/ $\mathrm{x}=\mathrm{s} \mathrm{z}$ \/ $\mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}$) /
($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}->\mathrm{fib} \mathrm{x} \mathrm{x} 2$).
... proof script here ...
... apply fib_square_above...
... proof script continued ...

Adapters as a general concept: many purposes translation of formulas, normalizing, renaming, resolving conflicts, logical operations (instantiation, unfolding ..)

ADAPTERS

Manual or automatic construction
Non-harmful possibility of exploring combinations

THEOREM, in Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall y, times x x y ->
    forall u, fib x u -> lt y u.
```

Theorem fib_squares: forall x x2, nat x \rightarrow times x x x2 ->

($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}->$ fib x x 2).
... proof script here
... apply fib_square_above...
... proof script continued ...

THEOREM, in Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall y, times x x y ->
    forall u, fib x u -> lt y u.
```

Theorem fib_squares: forall x x2, nat x times x x $x 2$->

($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z} \backslash / \mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}->\mathrm{fib} \mathrm{x} \mathrm{x} 2$).
... proof script here ...
... apply fib_square_above...
... proof script continued ...
abella publishing mode >> dispatch publish

THEOREM, in Abella

```
Import "damf:bafyreifswwil. . ." as
Theorem fib_square_above: forall x, nat x ->
    leq (s^13 z) x ->
    forall y, times x x y ->
    forall u, fib x u -> lt y u.
```

Theorem fib_squares: forall x x2, nat $x \rightarrow$ times $x \times x 2$ $->$

($\mathrm{x}=\mathrm{z} \backslash / \mathrm{x}=\mathrm{s} \mathrm{z}$ \/ $\mathrm{x}=\mathrm{s}^{\wedge} 12 \mathrm{z}->$ fib x x 2).
... proof script here ...
... apply fib_square_above...
... proof script continued ...

abella publishing mode >> dispatch publish

bafyreihmsxveyp5so4neeah6rf35vuzj4urobaudy54...

```
dependencies: cid of fib_square_above(Abella) + other possible abella lemmas
    conclusion: cid of fib_squares(Abella)
```


The poor poet, Carl Spitzweg. Public domain, via Wikimedia Commons

DESIGN \& IMPLEMENTATION

Linking the assertions: lookup

Who/what can I
trust?

dependencies: []	
conclusion: cid of fib_square_above(Coq)	$<K 1$, Coq>

dependencies: cid of fib_square_above(Coq)	
conclusion: cid of fib_square_above(Abella)	$<k 2$, null>

\square
\square

dependencies: cid of fib_square_above(Abella) $+\ldots$.	$<\mathbb{K} 2$, Abella
conclusion: cid of fib_squares(Abella)	

Who/what can I trust?
\square

\square
Who/what can I trust?
$>$ lookup cid of fib_squares (Abella)
\square

\square
Who/what can I trust?
> lookup cid of fib_squares(Abella)

1. <K2, Abella> -- [cid of fib_square_above(Abella)]

Who/what can I trust?
> lookup cid of fib_squares(Abella)

```
1. <K2, Abella> -- [cid of fib_square_above(Abella)]
2. <K2, Abella>, <K2, null> -- [cid of fib_square_above(Coq)]
```


Who/what can I trust?
> lookup cid of fib_squares(Abella)

1. <K2, Abella> -- [cid of fib_square_above(Abella)]
2. <K2, Abella>, <K2, null> -- [cid of fib_square_above(Coq)]
3. <K2, Abella>, <K2, null>, <K1, Coq> -- []

Ivan Ayvazovsky, Public domain, via Wikimedia Commons

REMARKS ON DAMF

The Distributed Assertion Management Framework

Natural existence of different communities, approaches, languages, logics, systems

Full translations not always needed for building and representing heterogeneous developments

REMARKS ON Coherent information exchange in light of differences DAMF

Consensus, convergence possible, but not presumed
Cryptographic signatures for assertions (stamps)
Processing proofs for a reason, not always required

Information representation != trusting it no trust model is imposed, no truth notion is imposed

Arbitrary and tracked combination of

REMARKS ON DAMF

 assertionsno logical consistency directly guaranteed
stamps of agents on combinations and curations
various forms of curations referring to common objects

PROSPECTS

Design refinement through more questions

Annotations, where/how to store/represent proofs and evidence, metadata, proposed composition assertion, more on adapters

Improvement of lookup
PROSPECTS
Experimenting curation of libraries with human-readable names, granularity and compatibility of modes, etc

A visual, interactive DAMF browser

Graphical exploration of DAMF objects
Interactive compositions of assertions, etc

The Distributed Assertion Management Framework - DAMF

A communication model that aims to enable communication between heterogeneous agents in a distributed environment, setting up the ground for emergent diverse structures

More on design, documentation of implementations, code, publications, and a full walkthrough of a heterogeneous development can be found at:
https://distributed-assertions.github.io/

